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Abstract
A correct general formula for the spin current through an interacting quantum dot coupled to
ferromagnetic leads with magnetization at an arbitrary angle θ is derived within the framework
of the Keldysh formalism. Under asymmetric conditions, the spin current component Jz may
change sign for 0 < θ < π . It is shown that the spin current and spin tunneling
magnetoresistance exhibit different angle dependence in the free and Coulomb blockade
regimes. In the latter case, the competition of the spin precession and the spin-valve effect could
lead to an anomaly in the angle dependence of the spin current.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the new field of spintronics [1], the magnetic properties of
quantum devices control the transport properties via electron
spin, for example, the tunnel magnetoresistance (TMR) in
ferromagnetic tunnel junctions. The high magnetoresistance
in a TMR device is due to the spin-valve effect, namely, the
resistance strongly depends on whether the magnetizations of
the two ferromagnetic electrodes are parallel or antiparallel. By
switching the magnetization of one electrode with respect to
the other, the charge current is modulated by the relative angle
θ of the two magnetic moments. With the magnetic tunneling
injection technique, a pure spin current can be generated and
detected experimentally [2, 3]. This substantial progress in
experiment makes it feasible to investigate the spin transport
properties in mesoscopic systems.

To study the spin-dependent transport properties, a device
setup of a quantum dot (QD) coupled to ferromagnetic leads
has been proposed [4]. In such a geometry, the charge current
can be spin polarized and can induce a net spin current.
However, up to now, most of the previous works have been
devoted to charge transport properties, not to the study of the
spin current itself. Moreover, the main focus was on the charge
transport on a QD coupled to two ferromagnetic leads with

collinear magnetizations [5–16], while less attention was given
to the noncollinear alignment [17–27]. Braun et al [28] gave an
expression for the spin current through the left tunnel barrier.
However, they did not derive an adequate unified formula for
the spin current through the two tunnel barriers and did not
actually consider the spin current in a steady state. The z-
component of the spin current defined as a difference between
the spin-up and spin-down contributions to the charge current
was considered by Mu et al [29] for the noncollinear case.
Unfortunately, these authors did not properly take into account
the difference of the spin quantization axis for the two leads,
so their result is correct only for the parallel case.

Recently, Rudziński et al [20] studied the charge current
through a quantum dot coupled to noncollinearly polarized
ferromagnetic leads. They found that the current–voltage curve
reveals typical step-like characteristics. They also found that
the spin precession is enhanced by the Coulomb correlations
and strong spin polarization of the leads. Moreover, the
relationship between the charge current and the angle of
the magnetization configurations of the electrodes has been
studied by Zhou et al [26]. These authors concluded that
the angle dependence of the electric current in the free
regime varies monotonically from the parallel to antiparallel
alignment, while in the Coulomb blockade regime it varies
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nonmonotonically. However, authors of both references did
not consider the spin current in this general configuration.

In this paper, we first derive an exact general formula
for the spin current through a QD coupled to noncollinear
ferromagnetic leads, starting from the Heisenberg equation
for the spin operator in terms of the Keldysh Green’s
functions [28] (section 2). To the best of our knowledge, this
general formula of the spin current for this class of devices
is derived for the first time. It should play a similar role to
its charge counterpart derived earlier [4, 30, 31]. Then, by
using the equation-of-motion technique with the Hartree–Fock
decoupling scheme, the spin current is obtained as a function
of the bias voltage and the angle θ of the magnetization
configurations of the leads (section 3). Furthermore, the spin
current and the spin tunneling magnetoresistance (STMR) are
calculated numerically in both free and Coulomb blockade
regimes (section 4). The interplay of the spin precession
enhanced by the Coulomb repulsion and the spin-valve effect
gives rise to anomalous behavior of the angular dependence of
the spin current anticipated in the Coulomb blockade regime.

2. General expression for the spin current

The system considered in this paper is schematically shown in
figure 1, and it consists of a single-level quantum dot coupled
to two ferromagnetic metallic leads by tunneling barriers. The
magnetic moment M of the left electrode is pointing to the z-
direction, while the moment of the right electrode is at an angle
θ to the z axis in the x–z plane. We will use the local and global
quantization axes to describe the electron spin. The local
quantization axes are determined by the local spin polarization
in the leads, while the global axes are the local basis in the
left electrode. The corresponding model Hamiltonian is given
by [4]

H =
∑

k,σ ;α=L,R

εk,σ,αc†
k,σ,αck,σ,α +

∑

γ

εd d†
γ dγ + Ud†

↑d↑d†
↓d↓

+
∑

k

[
Tk,L

(
c†

k,+,Ld↑ + c†
k,−,Ld↓

) + h.c.
]

+
∑

k

[
Tk,R

(
c†

k,+,R cos
θ

2
− c†

k,−,R sin
θ

2

)
d↑

+ Tk,R

(
c†

k,−,R cos
θ

2
+ c†

k,+,R sin
θ

2

)
d↓ + h.c.

]
, (1)

where the spin projection on the local axes is denoted as
σ = ±, εk,σ,α = εk,α + σ Mα is the single-electron energy
in the αth electrode, and c†

k,σ,α and ck,σ,α correspond to the
creation and annihilation operators, respectively. Similarly, the
spin projection on the global axes is denoted as γ =↑↓, d†

γ and
dγ are the creation and annihilation operators of the electron on
the quantum dot with energy εd .

For simplicity, we can rewrite the model Hamiltonian into
a compact matrix form

H =
∑

k,α=L,R

Ĉ†
k,α ε̂k,αĈk,α + ε̂d D̂†D̂

+ U

4

[(
D̂†D̂

)2 − (
D̂†σ̂zD̂

)2]

+
∑

k,α=L,R

(
Ĉ†

k,αT̂k,αR†
αD̂ + h.c.

)
, (2)

Figure 1. Sketch of the system configuration. QD is coupled to two
ferromagnetic leads with magnetizations ML and MR at an angle θ .

where we have introduced the Nambu spinors and two useful
matrices

Ĉk,α =
(

Ck,+,α

Ck,−,α

)
, D̂ =

(
d↑
d↓

)
,

ε̂k,α =
(

εk,+,α 0
0 εk,−,α

)
, Rα =

(
cos θα

2 − sin θα

2

sin θα

2 cos θα

2

)
,

(3)
with θL = 0 for the left lead and θR = θ for the right
lead. When the spin operators of the two leads are considered
Ŝα = (h̄/2)

∑
k Ĉ†

k,ασ̂αĈk,α , the spin matrices are given by

σ x
L =

(
0 1
1 0

)
, σ

y
L =

(
0 −i
i 0

)
,

σ z
L =

(
1 0
0 −1

)
, σ x

R =
(

sin θ cos θ

cos θ − sin θ

)
,

σ
y

R = σ
y

L , σ z
R =

(
cos θ − sin θ

− sin θ − cos θ

)
.

(4)

From the Heisenberg equation, we can calculate the spin
current Jα = 〈Ĵα〉 from the lead to the dot [28]

Ĵα = i

h̄
[Ŝα, H ]

= i

2

∑

k

Tr
(
Ĉ†

k,ασ̂αT̂k,αR†
αD̂ − D̂†RαT̂∗

k,ασ̂αĈk,α

)
. (5)

Moreover, by introducing the Keldysh Green’s function
matrices

Ĝ<
α (k, t) = i

( 〈C†
k,+,α(0)d↑(t)〉 〈C†

k,−,α(0)d↑(t)〉
〈C†

k,+,α(0)d↓(t)〉 〈C†
k,−,α(0)d↓(t)〉

)
,

Ĝ<
d (t) = i

( 〈d†
↑(0)d↑ (t)〉 〈d†

↓ (0) d↑(t)〉
〈d†

↑(0)d↓(t)〉 〈d†
↓(0)d↓(t)〉

)
,

(6)

we can further rewrite the expectation value of the spin current
as

Jα =
∑

k

∫
dω

2π
Re

[
Tr

(
Ĝ<

α (k, ω)σ̂αT̂k,αR†
α

)]
, (7)

where Ĝ<
α (k, ω) is the Fourier transform of Ĝ<

α (k, t). Since
the ferromagnetic leads are noninteracting, we obtain the
Dyson equation for Ĝ<

α (k, ω) in terms of the Green’s function
matrices for the local dot electrons,

Ĝ<
α (k, ω) = Ĝr

d(ω)RαT̂∗
k,α ĝ<

α (k, ω)+Ĝ<
d (ω)RαT̂∗

k,αĝa
α(k, ω),

(8)
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where

ĝ<
α (k, ω) = 2π i fα(ω)

(
δ(ω − εk,+,α) 0

0 δ(ω − εk,−,α)

)
,

ĝa
α (k, ω) =

( 1
ω−εk,+,α−i0+ 0

0 1
ω−εk,−,α−i0+

)
,

with fα(ω) = [1 + exp(ω − μα)/(kBT )]−1, μL = −eV/2 and
μR = eV/2. Inserting these expressions into the spin current
formula, we obtain the spin current as follows:

Jα =
∫

dω

4π
Re

(
Tr

{
iΓ̃α(ω)

[
2 fα(ω)Ĝr

d(ω) + Ĝ<
d (ω)

− iP
∫

dE

π

Ĝ<
d (E)

E − ω

]})
, (9)

where the integral is taken as the principle value and

Γ̃α(ω) = Rα

(

+,α(ω) 0

0 
−,α(ω)

)
σ̂αR†

α, 
σ,α(ω)

= 2π
∑

k

∣∣Tk,α

∣∣2
δ(ω − εk,σ,α). (10)

Since this system is quasi one-dimensional, different from the
spin Hall systems [32–34] in which the spin–orbit coupling is
essential, we do not take into account those spin flip processes
due to the spin–orbit coupling. So we do consider the spin
current through a QD as a continuous and conserved quantity.
The steady state is realized in the system through the scattering
process, which is similar to the charge transport. As far as we
understand, no one has studied the detailed relaxation process
within the QD. In a steady state, the spin current is uniform,
so JL = −JR. Thus, we can symmetrize the spin current as
J = (JL − JR)/2 which is similar to the operation performed
on the expression for the charge current [4, 30, 31]. The general
expression for the spin current is then given by

J = 1

2

∫
dω

2π
Re

{
Tr

[
i
[

fL(ω)Γ̃L(ω) − fR(ω)Γ̃R(ω)
]
Ĝr

d(ω)

+ [
Γ̃L(ω) − Γ̃R(ω)

]( i

2
Ĝ<

d (ω) + P
∫

dE

2π

Ĝ<
d (E)

E − ω

)]}
.

(11)

Braun et al [28] gave an expression for the spin current through
the left tunnel barrier, but they did not derive a unified formula
for the spin current through the left and right tunnel barriers.
Also, these authors did not provide a symmetrized formula
in the steady state, which is essential for the calculation
and discussion of the spin current. Mu et al [29] used the
difference between the charge currents through the spin-up
and spin-down channels to define the z-component of the spin
current. However, these authors did not properly take into
account the difference of the two local quantization axes of the
two ferromagnetic leads which strongly affects the tunneling
Hamiltonian, as pointed out by Rudziński et al [20]. Moreover,
their expression of the charge current was not symmetrized. As
a result, their formula is correct only for the parallel case.

3. Calculation of the Keldysh Green’s functions

To investigate the nonequilibrium transport properties, there
are two commonly used techniques to calculate the Keldysh

Green’s functions. One is the real-time diagrammatic
technique [9, 19, 22, 35, 36], based on a perturbation expansion
in terms of the dot-lead coupling strength, whereas the
Coulomb interactions on the dot are exactly taken into account.
However, this technique only considers finite-order tunneling
processes, and cannot deal with the coupling between the dot
and the electrode exactly. The other alternative is the equation-
of-motion technique [4, 10, 13, 20, 21, 37] which treats the
dot-lead coupling exactly, while the strong correlations on the
dot can be dealt with only approximately.

In this paper, the Green’s functions are solved by
the equation-of-motion technique with the Hartree–Fock
decoupling scheme [20, 37]. The solution can be written in
a compact form of the matrix Dyson equation

Ĝd(ω) = [
1 − ĝd(ω)Σ(0) (ω)

]−1
ĝd(ω), (12)

where

ĝd(ω) =
(

ω−εd −U(1−〈n↓,↓〉)
(ω−εd )(ω−εd −U)

− U〈n↓,↑〉
(ω−εd )(ω−εd −U)

− U〈n↑,↓〉
(ω−εd )(ω−εd −U)

ω−εd −U(1−〈n↑,↑〉)
(ω−εd )(ω−εd −U)

)

with 〈nα,β 〉 = 〈d†
αdβ〉 and ĝd(ω) denotes the corresponding

Green functions in the matrix form of the uncoupled dot. The
self-energy Σ(0)(ω) is given by

Σ(0)(ω) =
(

�
(0)
++(ω) �

(0)
+−(ω)

�
(0)
−+(ω) �

(0)
−−(ω)

)
,

with

�
(0)
±±(ω) =

∑

k

[ |Tk,L|2
ω − εk,±,L

+ CK

∣∣Tk,R

∣∣2
]
,

�
(0)
±∓(ω) = 1

2

∑

k

∣∣Tk,R

∣∣2
DK sin θ,

CK = cos2(θ/2)

ω − εk,±,R
+ sin2(θ/2)

ω − εk,∓,R
,

DK = 1

ω − εk,+,R
− 1

ω − εk,−,R
.

(13)

Then one can calculate the retarded Green functions as

Gr
↑↑(ω) =

[
gr

↑↑(ω) − A(ω)�
(0)r
−− (ω)

] /
B(ω),

Gr
↑↓(ω) =

[
gr

↑↓(ω) − A(ω)�
(0)r
+− (ω)

] /
B(ω),

Gr
↓↑(ω) =

[
gr

↓↑(ω) − A(ω)�
(0)r
−+ (ω)

] /
B(ω),

Gr
↓↓(ω) =

[
gr

↓↓(ω) − A(ω)�
(0)r
++ (ω)

] /
B(ω),

where

A(ω) = gr
↑↑(ω)gr

↓↓(ω) − gr
↑↓ (ω) gr

↓↑(ω),

B(ω) = 1 − gr
↑↑(ω)�

(0)r
++ (ω) − gr

↓↓(ω)�
(0)r
−− (ω)

− gr
↑↓(ω)�

(0)r
−+ (ω) − gr

↓↑ (ω) �
(0)r
+− (ω)

+ A(ω)
[
�

(0)r
++ (ω)�

(0)r
−− (ω) − �

(0)r
+− (ω)�

(0)r
−+ (ω)

]
.
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The retarded self-energies �
(0)r
±± (ω) and �

(0)r
±∓ (ω) are given by

the formulae

�
(0)r
±± (ω) = − i

2
[
±,L(ω) + 
±,R(ω) cos2(θ/2)

+ 
∓,R(ω) sin2(θ/2)],

�
(0)r
±∓ (ω) = − i

4
[
+,R(ω) − 
−,R(ω)] sin θ.

(14)

In the following we assume


±,L(ω) = 
±,L = 
0(1 ± pl),


±,R(ω) = 
±,R = γ
0(1 ± pr),

where pl and pr denote the spin polarization of the left and
right electrodes, respectively, and the parameter γ expresses
the asymmetry coupling of the left and right electrodes to the
dot. Ĝ<

d (ω) can be obtained from the Keldysh equation,

Ĝ<
d (ω) = Ĝr

d(ω)Σ<(ω)Ĝa
d(ω), (15)

where the full self-energy Σ<(ω) is related to Σ(0)<(ω) via the
Ng ansatz [38]

�<
±±(ω) = i
0[ fL(ω)(1 ± pl) + γ fR(ω)(1 ± pr cos θ)],

�<
±∓(ω) = iγ
0 fR(ω)pr sin θ.

(16)
The statistical averages of 〈nα,β 〉 have to be calculated self-
consistently in the following way:

〈nσ,σ 〉 = Im
∫ +∞

−∞
dω

2π
G<

σσ (ω),

〈nσ,σ̄ 〉 = −i
∫ +∞

−∞
dω

2π
G<

σ̄σ (ω).

(17)

This approximate calculation of the Keldysh Green’s
functions does not take into account the Kondo-like
correlations which need a careful treatment of the Coulomb
interaction on the dot. Some previous works which studied the
charge transport properties of this system discussed the Kondo
effect, including the collinear alignment [5–12, 15, 16] and the
noncollinear case [4, 21, 23, 27]. It is left for our future work
to discuss the influence of the Kondo-like correlations on the
spin transport properties of this system.

4. Results and discussions

Now we numerically calculate the three components of the spin
current. Since a general magnetic configuration of the leads is
considered, the spin tunneling magnetoresistance (STMR) can
be estimated by

STMRa = Ja(θ = 0) − Ja(θ)

Ja(θ = 0)
, a = x, y, z (18)

where Jx,y,z(θ) denote the three components of the spin
current. In the following three different situations are
considered: a symmetric junction with fully polarized external

Figure 2. Voltage bias dependence of the spin current for θ = π/3.
(a) Jz, (b) Jx , and (c) Jy. The parameter values assumed are
εd = 0.1 eV, U = 0.4 eV, 
0 = 0.01 eV, γ = 1, and T = 100 K.

electrodes (pl = pr = 1), with partially polarized external
electrodes (pl = pr = 0.4), and an asymmetric junction
(pl = 0.4, pr = 1).

The Jz-voltage curve for the symmetric cases reveals
typical step-like characteristics. Below the lower threshold
voltage, the dot is empty and the sequential contribution to Jz

is exponentially suppressed. The first step in Jz occurs at a
critical bias, where the discrete level εd crosses the Fermi level,
whereas the step at a higher threshold corresponds to the case
when εd +U crosses the Fermi level. In the same voltage range,
Jz in the case of pl = pr = 1 is much larger, since the external
electrodes are fully polarized. Mu et al [29] also considered
this case (pl = pr = 0.4, θ = π/3), but their result is different
from ours because they did not properly take into account the
difference of the local quantization axes in the two leads and

4
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Figure 3. Angle dependence of the spin current and spin tunneling magnetoresistance in the free regime for v = −1.5 V. (a) Jz, (b) STMRz ,
(c) Jx , (d) STMRx , (e) Jy , and (f) STMRy . The parameter values assumed are εd = 0.1 eV, U = 0.4 eV, 
0 = 0.01 eV, γ = 1, and
T = 100 K.

hence the result for the z-component of the spin current is
incorrect. The case of pl = 0.4, pr = 1 is more complex
(red dashed curve in figure 1(a)), as the asymmetry between
the left and right electrodes gives rise to asymmetrical transport
characteristics of the junction with respect to the bias reversal.
For the positive bias, the Jz curve is rather smooth above the
first threshold voltage, while for the negative bias, below the
first threshold sequential tunneling is exponentially suppressed
and only the higher-order tunneling processes are possible.
When εd approaches the Fermi level of the left electrode,
resonant tunneling can happen. However, as the bias further
increases, Jz is suppressed by an electron on the QD since
the electrode is partially polarized (Coulomb blockade effect),
and a small peak appears as a result of competition between
the resonance tunneling and the Coulomb repulsion. After
the second resonant tunneling, Jz finally saturates at a certain
level. The behavior of spin current component Jx (figure 2(b))
is similar to the component Jz (figure 2(a)), because the
magnetizations of the two leads are aligned in the x–z plane.

However, the asymmetry effect resulting in the appearance of a
peak at the first threshold is more pronounced. It appears even
for the symmetric electrodes (pl = pr = 0.4, 1), because the
Coulomb blockade effect already shows up. The asymmetry
of the spin current curve is even more pronounced for the y-
component (figure 2(c)). Nevertheless, the two peaks on the Jy

curve are exactly located at the two resonant tunneling biases.
The spin current is strongly affected by the angle θ

between the magnetic moments of the leads and we can use
STMR to describe it. In the free regime, where |eV/2| >

εd +U , the QD energy level may be occupied by two electrons,
because the Coulomb correlation plays a small role in the spin
tunneling. As a result, Jz and STMRz exhibit a monotonic
variation between the parallel and antiparallel magnetization
configurations, which is typical of a normal spin-valve effect.
Under the third condition (pl = 0.4, pr = 1), Jz can achieve
a negative value. The absolute values of Jx and Jy achieve
their maxima between θ = 0 and π , as shown in figures 3(c)
and (e), since the absolute values of the x and y components of

5
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Figure 4. Angle dependence of the spin current and spin tunneling magnetoresistance in the Coulomb blockade regime for v = −0.5 V.
(a) Jz, (b) STMRz , (c) Jx , (d) STMRx , (e) Jy, and (f) STMRy . The parameters assumed for numerical calculations are εd = 0.1 eV,
U = 0.4 eV, 
0 = 0.01 eV, γ = 1, and T = 100 K.

the electron spin in the right electrode may increase when the
magnetic moment of the right lead approaches the x–y plane.

In the Coulomb blockade regime εd < |eV/2| < εd + U ,
the QD energy level can be occupied only by one electron. The
Coulomb interaction plays an important role in the spin current
through the QD. In figure 4(a), it is found that Jz(θ = 0) is no
longer maximal and Jz(θ) is greater than Jz(θ = 0) in a wide
range of θ under this condition (pl = 0.4, pr = 1). It is quite
different from that in the free regime. The coupling between
the QD and the ferromagnetic leads may induce an effective
exchange field, and its strength and orientation with respect
to the global quantization axis depend on the bias voltage
and the angle between magnetizations of the leads. When
only one electron resides on the QD energy level, the spin
degrees of freedom experience a torque due to the effective
exchange field, which results in precession of the spin around
the field [17]. This process would suppress Jz , and the
competition between the spin precession effect and the spin-

valve effect leads to the anomaly of Jz(θ). As a result of the
spin precession, the signs of Jx(θ) and Jy(θ) are opposite to
those in the free regime.

In conclusion, we have derived a general formula for the
spin current through a QD coupled to ferromagnetic leads
with noncollinear magnetizations, and used the formula to
calculate the spin transport properties of the system. The
competition of the spin precession and the spin-valve effect
results in an anomaly of the angle dependence of the spin
current. Further investigations are needed to carefully treat the
Coulomb interaction on the QD.
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